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Abstract

Background: Tilt series are commonly used in electron tomography as a means of collecting
three-dimensional information from two-dimensional projections. A common problem encoun-
tered is the projection alignment prior to 3D reconstruction. Current alignment techniques usually
employ gold particles or image derived markers to correctly align the images. When these markers
are not present, correlation between adjacent views is used to align them. However, sequential
pairwise correlation is prone to bias and the resulting alignment is not always optimal.

Results: In this paper we introduce an algorithm to find regions of the tilt series which can be
tracked within a subseries of the tilt series. These regions act as landmarks allowing the
determination of the alignment parameters. We show our results with synthetic data as well as
experimental cryo electron tomography.

Conclusion: Our algorithm is able to correctly align a single-tilt tomographic series without the
help of fiducial markers thanks to the detection of thousands of small image patches that can be
tracked over a short number of images in the series.

Background
Electron tomography is a rapidly growing technique that
produces structural information of organelles and cell
compartments at a resolution between 40 and 20Å [1-3].
This kind of information helps structural biologists to
understand how macromolecular machines interoperate
in the cell to perform their functions and is giving rise to
what is called "visual proteomics" [4,5].

This technique relies on the tomographic reconstruction
of the object under study from the projection images
acquired by the electron microscope. The most popular

data collection geometry is a single-axis tilt series [6],
although other geometries are also possible like multi-
ple-axis [7-9] or conical tilt [10,11]. In this article we
concentrate on single-axis tilt series. With this technique
the sample is tilted around an axis to provide different
projection views of the object under study. As the object
is tilted electrons have to traverse thicker sections. Thus,
this technique is normally restricted to a maximum tilt of
about 70°. Due to mechanical instabilities of the sample
holder during rotation, it is possible that some of the
images of the series exhibit a large shift with respect to
the rest. Besides their shift, their relative projection
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directions must be established before entering the three-
dimensional reconstruction process. This basically
amounts to determining the tilt axis in each of the
images since its exact position may not be the same on
each projection.

Alignment of the tilt series is usually performed by
aligning gold beads that serve as fiducial markers
[12-14]. Although quite effective when these markers
are available, this technique is not always applicable
since markers are not always visible or trackable, or
because, simply, they are not available [15]. Alterna-
tively, image corners can be used as fiducial markers
[16], or the image information content itself can be used
through cross-correlation [17,18]. The image informa-
tion has been proven to be the most valuable informa-
tion in image registration [19] and, therefore, algorithms
based on cross-correlation with a reference volume or
similar techniques are supposed to provide the best
results as is the standard case in electron microscopy of
single particles [20]. However, when aligning tilt series
there is no a priori volume that can be used as reference,
and for this reason, the algorithm employed must align
the images with information exclusively contained in the
image series. There are three main possibilities to use
cross-correlation in this context of tilt series alignment.
The first possibility is to serially align the first image with
the second by cross-correlation, the second with the
third, etc. This approach compares similar images,
although it has the drawback of serious potential drifts
(by error propagation) of the alignment parameters
resulting in inaccurate estimations of the tilt axis and
shift parameters in each of the images. The second
option is to use cross-correlation to track features within
the tilt series. Features are defined as fiducial points in
the images (due to change of contrast, borders, corners,
etc.) that are searched by cross-correlation in neighbor-
ing images. The feature tracking allows to define markers
that are visible in only a subsequence of the whole tilt
series. The third approach constructs a rough reconstruc-
tion of the tomogram and realigns the tilt series with
respect to reprojections of the rough reconstruction [18].

We exploit the second option by searching for image
regions that can be tracked within a subseries of the tilt
series. An overall affine image registration is performed
to be able to predict the position of any image region in
any of the adjacent images. If all images are numbered
according to their tilt angle in the tilt series, a region of
image i is sought in image i + 1, first predicting its
position through the affine transformation, and then by
local refinement of the cross-correlation. Once, the
region is found in image i + 1, the equivalent region in
image i + 1 is sought in image i + 2. The algorithm thus
propagates a coordinate in image i to images i + 1, i + 2,

until the region sought cannot be found anymore
because it becomes obscured by other objects, it changes
its shape, or the noise does not allow to find it. The same
is done backwards. All the coordinates corresponding to
equivalent image regions form a landmark chain which
most likely does not cover the whole tilt series.
Landmark chains are further refined to guarantee that
they correspond to equivalent image regions. Finally, all
landmark chains are used to perform a robust regression
of the image alignment parameters. An advantage of this
approach is that it is fully automatic and it can produce
thousands of landmark chains which are used to align
the images. We have tested our algorithm with synthetic
data as well as experimental cryo electron microscopy
data.

The method proposed in this paper differs from other
published methods in a number of ways. The algorithm
proposed by Penczek et al. in [9] is very similar in its
basics to the one presented in this paper. Our main
differences are that we provide a mechanism to
automatically estimate landmark positions, our algo-
rithm is based on the use of thousands of short
landmark chains (although this feature is also allowed
in Penczek's algorithm, it was not conceived to be used
in this way), we perform a robust estimation of the
alignment parameters, and we provide matrix closed
forms of the parameter estimates which are more
convenient for implementation. The algorithm described
by Mastronarde in [21] differs also mainly in our
automatic estimation of the landmark positions yielding
thousands of short landmark chains. The optimization
procedure is also different, ours being more analytical.
The approach of Brandt in [22] and Castaño-Díez in [23]
differ from ours in the way landmark chains are
automatically detected and refined, and the posterior
optimization procedure followed to estimate the align-
ment parameters. Their algorithms also perform a robust
optimization, although in a different way to ours.

Results and discussion
Before reading this section we strongly suggest to read
the Methods Section to get acquainted with the
terminology and different parameters of the algorithm.

Simulated data
In order to test the accuracy of the new alignment
algorithm we created a phantom built with mathema-
tical descriptions of cylinders and spheres (see Fig. 1).
The phantom size is 512 × 512 × 128 voxels. For the first
experiment 41 images of size 512 × 512 were simulated
with a maximum tilt of 60° and a step of 3° between
images. The tilt axis passed through the coordinate origin
and its direction was defined by the angles a = 0 and
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b = 90 (see Methods). No in-plane transformations were
applied to the projections. Landmark regions had a size
of 7.5% the total size of the images (regions were 39 ×
39 pixels in this case), a grid of 40 × 40 evenly spaced
points in each projection image were considered as
centers of the landmark regions (this means that
between two adjacent regions of length 39, there is an
overlap of 27 pixels).

Landmark chains were accepted if the correlation
coefficient between any two regions being compared
was higher than 0.98, and the total length of the chain
was larger than 10 images. 5801 landmark chains were
identified with an average length of 16.5 images. 3136
landmark chains were used in the last regression
iteration. There was an average error between the
projection of the 3D landmarks and its observed
projections of 0.86 pixels (i.e., the goal function in
Eq. 6 divided by the total number of 3D landmarks). To

objectively evaluate the quality of the reconstruction
performed with the alignment parameters produced by
our algorithm, we computed the correlation index of this
volume with the volume reconstructed with the ground-
truth alignment parameters. The result was 0.98.

For the second experiment 61 images were simulated
with a maximum tilt of 60° and a step of 2° between
images. The rest of the conditions were as in the previous
example except that a = 78 (this experiment was done in
order to test the algorithm ability to find a tilt axis that is
not aligned with any of the standard axes). The
parameters for our algorithm were identical as in the
first experiment. 16562 landmark chains were identified
with an average length of 23.1 images. 8748 landmark
chains were used in the last regression iteration. There
was an average error between the projection of the 3D
landmarks and its observed projections of 0.51 pixels.
The correlation between the volume reconstructed with
the estimated parameters and the reconstruction per-
formed with the ground-truth parameters was 0.99.

In the third experiment, images were collected as in
experiment 2 except that a = 0. The collected images
were randomly shifted in X and Y by a displacement
following a Gaussian distribution with zero mean and
standard deviation 20 (note that the images were of
size 512 × 512). 12048 landmark chains were
identified with an average length of 21.38 images.
6284 landmark chains were used in the last regression
iteration. There was an average error between the
projection of the 3D landmarks and its observed
projections of 1.13 pixels. The correlation between
the volume reconstructed with the estimated para-
meters and the reconstruction performed with the
ground-truth parameters was 0.98.

The fourth experiment was aimed at characterizing the
performance of the algorithm under slowly varying
drifts. The 61 images of the second experiment were
used for this last experiment. The first image was rotated
-4 degrees, the second image was rotated -2 degrees, the
third image was not rotated, the fourth image was
rotated 2 degrees, and the fifth image was rotated 4
degrees. This sequence (-4, -2, 0, 2, 4) was repeated along
the rest of the series. After rotation, the first image was
shifted -30 pixels in each direction. Then, the rest of the
images were shifted one pixel vertically and horizontally
with respect to its predecessor so that the last image was
shifted 61 pixels with respect to the first one. Our
algorithm was run with chain lengths of 5, a correlation
threshold of 0.99, local regions of a size of 7.5% the total
size of the images. 28843 landmark chains were
identified with an average length of 17.74 images.
14814 landmark chains were used in the last regression

Figure 1
Phantom data. Top:Isosurface of the phantom used for the
simulated data. Bottom: Projections of this phantom at -60°,
0°, and 60°. The tilt axis forms 78° with the horizontal axis.
These images correspond to experiment number four where
a shift drift was simulated along the tilt series. This explains
the different location of each of the projections.
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iteration. There was an average error between the
projection of the 3D landmarks and its observed
projections of 0.33 pixels. The correlation between the
volume reconstructed with the estimated parameters and
the reconstruction performed with the ground-truth
parameters was 0.99.

In the last experiment, we checked whether the algo-
rithm was able to work in a noisy environment. The
experimental setup was the same as in the previous
experiment but we added white noise to the simulated
images (the level of noise added was such that the
correlation between pairs of consecutive images in the
tilt series was in the same order of the correlation
observed between consecutive images in the experimen-
tal tilt series described below for the Pyrodictium abyssi).
The presence of noise significantly lowers the correlation
between patches. For this reason we reduced the patch
size to only 4% of the image size and lowered our
correlation threshold to 0.9. 7848 chains were auto-
matically extracted, out of which 4134 participated in
the last regression iteration. The average of the error
between the projection of the 3D landmarks and the
observed projections was 2.7 pixels. Finally, the correla-
tion between the volume reconstructed with the esti-
mated alignment parameters and the reconstruction
performed with the ground-truth parameters was 0.94.

Experimental data
For testing the algorithm with real data a tilt series of a
Pyrodictium abyssi cell strain TAG11 [24], which was
embedded in a vitreous ice layer [25] on a holey carbon-
coated grid, was used. Electron tomography was per-
formed using a CM120 Biofilter (FEI, Eindhoven, The
Netherlands) at an accelerating voltage of 120 keV. It was
equipped with a postcolumn energy filter (Gatan,
Pleasanton, CA), operated in the zero-loss mode [26],
resulting in increased image contrast [27]. The tilt series
ranged from -70° to +67° with a tilt increment of 1.5°
and a total number of 91 images. Data acquisition was
carried out using fully automated procedures under low-
dose conditions [28]. The images, which were 1024 ×
1024 pixels each, were recorded at 14,500× magnifica-
tion, with a pixel size at the specimen level of 1.62 nm.
The defocus was set to -10 μm; the first zero of the phase-
contrast transfer function was at (5.8 nm)-1. The images
collected were not lowpass filtered or deconvolved with
the microscope contrast transfer function. Our algorithm
was run with chain lengths of 5, a correlation threshold
of 0.9, local regions of a size of 4% the total size of the
images (patches of size 41 × 41 pixels, with an overlap of
15 pixels). 1255 landmark chains were identified with an
average length of 15.65 images. 706 landmark chains
were used in the last regression iteration. There was an

average error between the projection of the 3D land-
marks and its observed projections of 0.85 pixels. The
resulting reconstruction can be seen in Fig. 2. For
comparison purposes we performed a reconstruction
from the same dataset using the standard alignment
algorithm based on manual selection of fiducial markers
which is shown in Fig. 3. For the manual alignment four
landmarks were identified along the whole tilt series and
TOM toolbox was used for the alignment and 3D
reconstruction [29]. As can be seen, the two reconstruc-
tions are not significantly different, although they are
not identical. The correlation between the two volumes
after registration was 0.635, however, as can be seen
in Fig. 4, these differences are not located where
the archaeobacteria is and are mainly located in the
surrounding structure (this is most likely due to the fact
that the manually selected landmarks were chosen from
the bacteria region while the surrounding objects were
disregarded).

Discussion
In this article we have presented a new algorithm for the
automatic alignment of electron tomographs. The main
idea is the identification of thousands of small landmark
chains that clearly correspond to the same point in a
number of images. In contrast to previously published
papers, our objective is to detect many short chains
instead of a few long ones. This has the advantage of
providing much more information to the alignment
process and simplifies at the same time the task of
identifying corresponding points within the tilt series. In
fact, that is currently one of the limiting steps in image
alignment in electron tomography: even if gold beads are
available (which also result in stripe artifacts present in
the 3D reconstruction that may hide interesting struc-
tural features), sometimes they are so much clustered
that it is difficult to identify the same gold bead within
the whole tilt series since in some of the images it is
among many other gold beads clustering in the same
region. Moreover, this process of identifying correspond-
ing landmarks within the tilt series is many times done
by the user, or done automatically by cross correlation of
correlative image pairs and refined/corrected by the user.
The main reason for the need of user interaction is that
tracking the same point within the whole series is a
difficult problem to be solved automatically. Placing the
focus on thousands of short landmark chains makes the
problem much more computationally tractable and
reliable. Furthermore, the robust regression step tends
to remove those possibly wrongly identified chains.

Our treatment of the chain identification is quite strict
and it is one of the keys of the algorithm. The idea is to
have a first rough idea of corresponding landmarks using
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Figure 3
Experimental data reconstructed automatically. Top:
Corresponding orthogonal slices of the volume in Fig. 2
which was reconstructed using the parameters estimated by
the proposed automatic alignment algorithm. Bottom:
Reconstruction of the same dataset used in Fig. 2 aligned by
manually selecting the fiducial markers instead of using the
automatic alignment algorithm presented in this paper.

Figure 2
Experimental data reconstructed automatically.
Three orthogonal slices of the Pyrodictium abyssi. The three
slices are shown in 3D with their relative orientations (top)
as well as separately. The scalebar represents 500 nm.
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the affine transformation between any pair of correlative
images. Given the size of the images there is enough
information to determine the six parameters of the affine
transformation quite faithfully. Moreover, a careful
global and accurate search of the parameters is
performed through the combined use of a global
optimizer (differential evolution) and a local optimizer
(Powell's conjugate gradient method). This initial guess
of the landmark chain is improved by locally shifting the
image regions to maximize the correlation between
corresponding regions. This allows for elastic local
deformations that cannot be taken into account solely
by the affine transformation (note that the elastic
deformations are considered at the chain construction
level, although the whole alignment procedure can only
explain affine transformations and, therefore, it looses
part of the richness of information captured by the
landmark chains). Once the landmark chain is identified
by using correlative image pairs, it is carefully refined by
forcing each region to be similar not only to the
equivalent regions in adjacent images, but to equivalent
regions all along the image chain. This is also one of the
key steps of the algorithm that greatly improve the
landmark chain identification, and discards many slowly
drifting chains. For the success of the algorithm it is
recommended that a "dense" grid of landmark chains is
available, meaning by this that there are enough

landmark seeds in the image (we chose in our experi-
ments a grid of 40 × 40) so that the local significantly
overlap (in our experiments we used patches that
overlapped between 35% and 70% of the patch length).
We also suggest to use as small local patches as possible
(values between 3% and 5% of the image size are
sensible). Poor coverage of the image by the local
patches will most likely result in the miss of many
landmark chains, and consequently missing much of the
information available in the image series.

Finally, our derivation of the equations governing the
optimization of the alignment parameters, although
equivalent to the previous derivation of Penczek et al.
[9], is much more compact and provides further insight
in the nature of the multivariate optimization. This fact
facilitates the algorithmic implementation of the opti-
mization procedure.

Conclusion
In this paper a new algorithm for automatic alignment of
electron tomographs has been presented. The algorithm
is based on the automatic detection of thousands of
short landmark chains identifying image regions that
clearly correspond to the same point in a relatively small
number of images. Regions identified in this way must
correlate well (usually with a correlation coefficient
higher than 0.9) among all the corresponding pieces in
the landmark chain, and the average of all of them. After
these corresponding regions have been identified, a
robust regression process is performed to finally find the
relative alignment between all images. The process has
been shown to successfully align images under condi-
tions of random shifts between image pairs, and under
conditions of slow but sustained drift between images.
It has also been successfully applied to experimental
images. The algorithm is available from the Xmipp
package [30] and will be soon incorporated into TomoJ
[31].

Methods
Affine registration of two images
Given any two images I(i) and I(j) the affine registration
tries to find an affine matrix

A

a a a

a a aij =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

11 12 13

21 22 23

0 0 1

(1)

transforming homogeneous coordinates (tH) of the
image i into the image j. We look for this affine
transformation by maximizing the cross-correlation of
the images registered bidirectionally [32,33]

Figure 4
Slice of the difference between the two volumes
shown in Fig. 3. As can be seen most of the differences
between the two volumes are not located where the
bacteria is.
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The cross-correlation in each direction is carefully
computed only in those regions which are visible in
both images, i.e., only at those coordinates tH such that
tH Œ Ωi and AijtH Œ Ωj, being Ωi and Ωj the set of
coordinates where the images i and j are defined.

The maximization problem in Eq. 2 is solved using two
different optimizers: Differential Evolution (DE) [34]
and Powell's conjugate gradient method [35]. DE is a
global optimizer based on genetic algorithms. It is rather
good at approximately finding the best affine transfor-
mation between any two images. However, its conver-
gence once it is closed to the global optimum is rather
slow. Then we change to a fast local optimizer such as
Powell's conjugate gradient method. In this way, we have
the advantages of a global optimizer with a fast, locally
convergent algorithm.

Landmark chains
In our algorithm, image regions act as landmarks.
Therefore, we must track image regions along the tilt
series. However, since it is rather unlikely that the same
region can be tracked along the whole series, we allow
for landmark chains that start at a given image of the tilt
series and finish in some other image. The region being
matched along the chain need not to be detectable in all
images in between the first and last image.

Every image in the tilt series, I(i), is divided in a fine grid
of overlapping image regions of a size much smaller than
the whole projection. The center of each region is a
landmark candidate. Given a region in image i, this
region is sought in image i + 1, first by predicting its
position using the affine transformation Ai,i+1 computed
in the previous section, and then by locally optimizing
the correlation index between the two corresponding
regions. If the correlation index is greater than a given
threshold, then the region in image i + 1 is accepted as
the one matching the landmark region in image i. The
new region in image i + 1 is sought in image i + 2, and
the process is subsequently repeated until the correlation
threshold criterium is not met. The same procedure is
performed backwards. At the end of this process we have
a landmark chain extending from image i - N to image
i + M for some integers N and M. If the landmark chain is
shorter than a certain user-supplied threshold, the chain
is discarded.

If the landmark chain survives the previous filter, it is
refined in an iterative way in order to avoid coordinate

drifts due to the sequential search of regions. For all
images between i - N + 2 and i + M the coordinate of the
landmark in image l is refined with respect to that in
image l - 2. This correction runs forward in the chain.
When it finishes, the positions are corrected backwards
(the position at image l is refined with respect to that of
image l + 1) running from i + M to i - N + 1. This process
is repeated with forward steps of 3, 4, ... up to a value
selected by the user (i.e., the landmark at image l is
refined with respect to the image l - 3, l - 4, ...
respectively), while the backward correction is always
performed with a step of 1. After this correction loops,
the average of all regions in the chain is computed. Those
regions that do not meet the correlation criterium with
the average region are removed from the chain. Then the
whole refinement step is repeated once again with the
surviving images. Those chains whose length after
refinement is smaller than the specified threshold are
discarded.

Optimization of the 3D landmarks and the image in-plane
rotation and shift
Once a list of landmark chains is produced in the
previous section, each chain is assumed to correspond to
the projection of the same 3D region, whose center is
projected onto the center of each region. The 3D
coordinates of these 3D landmarks as well as the rigid
transformation parameters explaining the rotations and
shifts of each projection in the tilt series are computed by
robust regression. Let rj be the 3D coordinate of the j-th
landmark and let pij be the 2D coordinate of its
projection onto image i. Let Vj be the set of all images
on which the j-th landmark is seen (remind that the
landmark chain may not contain all images between i - N
and i + M). Then, the relationship between rj and pij can
be expressed as

p r dij i j iA= + (3)

where Ai is a projection matrix accounting for the tilting
around the tilt axis (which may have any arbitrary
orientation in the plane perpendicular to the electron
beam) and a posterior in-plane rotation, and di is a 2D
vector accounting for an in-plane shift of image i. Ai is
computed as

A HR Ri i i axis
= y q, ,u (4)

where H is a matrix projecting a 3D coordinate onto the
XY plane, R

iy is a rotation matrix of ψi degrees around
the Z axis (note that the Z axis is the beam axis,
therefore, this represents the in-plane rotation particular
to each image), and R

i axisq ,u is a rotation matrix of θi
degrees (the tilt angle of each image) around the tilt axis
uaxis. The tilt axis is described by two Euler angles a and b
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corresponding to a rotation around the Z axis and, then,
a rotation around the new Y axis. The vector representa-
tion of the direction of the tilt axis is

uaxis = (sin cos , sin sin ,cos )b a b a b (5)

Note that this projection model assumes that the tilt axis
passes through the coordinate system origin. In practice
this is seldom the case, although as shown later in the
Appendix, the tilt axis can be arbitrarily placed in the tilt
series as long as the aligned projections are consistent
with the assigned position. The regression problem is to
minimize the error between the projections of the 3D
landmarks experimentally observed and their projections
under theoretical tilting and in-plane rotation and shift

arg min || ( ) ||
, , , ,y a bi i j

j

ij i j i

i Vj

A
d r

p r d− +
∈
∑∑ 2

(6)

or what is the same

arg min || ( ) ||
, , , ,y a bi i j

j

ij i j i

j Vi

A
d r

p r d− +
∈
∑∑ 2

(7)

where Vi is the set of landmarks detectable in the image i.

This regression problem is linear in di and rj and non-
linear in ψi, a and b. To find the minimizer of Eq. 7 we
decompose the problem in two nested searches. The first
search explores the a, b-space. For each combination of
a and b proposed in a first stage by an exhaustive grid
search and in a second stage by Powell's conjugate
gradient method whose initial solution is the minimizer
of the exhaustive grid search, the minimum is sought in
the ψi, di and rj parameters. The minimum in these three
parameters are sought in an iterative way by assuming all
the rest of the parameters fixed and minimizing the goal
function (E) with respect to the parameter treated at each
time. Note that this optimization procedure may be
trapped in a local minimum and that this optimization
process is different from the one performed to find the
affine transformation previously described. It can be
easily shown (see next section) that
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In the same way,
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where p i is the average of all landmark projections in
image i and ri

k( ) is the average of all the current
estimates of the 3D landmarks visible in image i. Finally
(see next section),
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and

∂
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= −( )+ +

∈
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R
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k

D
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k
ij H j

k t

j V
i axis
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q

( )

( )( )( )
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( )

2
2 1 1d p ru

(11)

Derivation of the matrix form of the regression problem
In this section we derive in a compact form the
minimization of the regression problem. Let E be the
goal function in Eqs. 6 and 7

E A

A A

ij i j i

j Vi

ij i j i
t

ij i j i

i

= − +

= − + − +

∈
∑∑ || ( ) ||
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i
t
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A A A
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∑∑
∑∑= − + + +( p p r d r r

d d

2 2

++ 2d ri
t

i jA )

(12)

We compute the derivatives of this goal function using
the vector derivatives ∂

∂ =a b
b a
t and ∂

∂ = +a a
a a
t A A At( ) .

From these rules, it is easy to derive

∂
∂

= = − + +

= + −

∈

∈∈

∑
∑∑

E

i
A

N A

ij i j i

j V

i i i j ij
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d
p r d

d r p
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(13)
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being Ni the number of elements of Vi, i.e., the number
of 3D landmarks visible in image i. From this last
equation it follows

d p ri ij

j V

i j

j V
Ni

A
Ni

i i

= −
∈ ∈
∑ ∑1 1

(14)

Now deriving with respect to rj

∂
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i j i
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(15)

from which
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Considering that A HR Ri
D

i i axis
= y q

( )
,

3
u , and given the

specific nature of H and R
i

D
y
( )3 , Ai can also be expressed

as A R HRi
D
i i axis

= y q
2

,u . We will refer to HR
i axisq ,u as

RH i axis, ,q u . Then, the goal function E can be expressed as
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Now we compute the derivative of E with respect
to RH i,y using the matrix derivative rule ∂

∂ =a b ab
t A
A

t
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∂
= −( )

∈
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R
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Taking into account that a clockwise rotation matrix is

given by R
i

D i i
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From which it can be easily derived
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Robust optimization
The optimization procedure described in the previous
sections is firstly run with all landmark chains detected.
Then, the fitting error is computed for each landmark
chain j as

E Aj ij i j i

i V j

= − +
∈
∑| ( ) || .p r d 2

(21)

A user-supplied percentage of the chains with worse
fitting errors are removed from the list of landmark
chains assuming that they may correspond to chains that
have been wrongly computed, and all the parameters
(direction of the tilt axis, position of the 3D landmarks
and image in-plane rotation and shifts) are reestimated
with the chains remaining. This process is repeated three
times, in this way a robust fitting of the alignment
parameters is performed.
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Appendix
On the exact location of the tilt axis
The projection model used in this article is

p duij iHR R
i i axis

= +y q , (22)

which assumes that the tilt axis passes through the
coordinate system origin. However, in practice this is
seldom the case, and one may wonder if it would be
possible to estimate its location with respect to the
microscope setup. In this appendix we show that this is
not possible. This ambiguity, more than a drawback, is
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an advantage since it allows us centering the tilt series at
will. Finally, we propose a sensible centering of the tilt
axis so that the image at zero degrees (or the one closest
to this tilt angle) is unmoved. However, the reader is free
to locate the tilt axis to his liking.

Let us consider the full projective model

p r r r duij j iHR R
i i axis

= − + +y q( ( ) ), 0 0 (23)

where r0 is a point of the tilt axis in 3D space and,
therefore, the tilt axis is not forced in this way to
passthrough the coordinate system origin. Let us add a
constant value rbias to the tilt axis

p r r r r r duij j bias bias iHR R

HR R
i i axis

i i

= − + + + +

=
y q

y q

( ( ( )) ( ))

(

,

,

0 0

uu u

u

r r r r d
axis i i axis

i i axis

j bias iHR I R

HR R

( ) ) ( )

(

,

,

− + + − +

=
0 0 y q

y q (( ) )r r r dj i− + + ′0 0

(24)

This means that any bias we add to r0 can be
automatically compensated by the appropriate shift ′d i
yielding the same regression residuals. This means that
absolutely locating the tilt axis within the microscope is
hopeless.

From another perspective this also permits us to
arbitrarily locate the tilt axis in the region of interest as
is usually done, to the best of our knowledge, with no
formal proof. In particular, we here propose a metho-
dology to locate the tilt axis such that the image at zero
degrees of tilt (or the one closest to this value) does not
move. This can be easily done by setting di = 0 for the i
corresponding to the unmoved image. In the following,
we will refer to this image as i = 0 even if its tilt angle is
not exactly zero but a small number θ0. The rest of the
di's in the optimization process will be accordingly
adjusted to achieve the minimum regression residual.
However, setting di = 0 only consumes two of the three
degrees of freedom provided by rbias. We propose to
determine the extra degree of freedom in the following
way. Suppose that b p= 2

(i.e., the tilt axis is perpendi-
cular to the electron beam as is usually the case). Then,
the images in the tilt series can be aligned so that the tilt
axis is parallel to the Y axis (the vertical axis in the
projection images) by applying

I I Rcorrected
i

H
i

H i
i

( ) ( )( ) ( )t t d= −
− −

p
a y

2
(25)

The extra degree of freedom is manifested by a tilt axis
that may not be within the volume to be reconstructed
(i.e., the tilt axis is well above or below the volume to
reconstruct). This can be easily detected because the

corrected 3D landmarks show a positive or negative
mean Z component. The projection of the 3D land-
marks seen at image 0 in the aligned tilt series is
given by

p ru0

2
0

0j jHR R
axis

=
− −

p
a y

q , (26)

These are the projections of the original 3D landmarks,
rotating around the original tilt axis and subsequently
corrected. However, we can find new 3D landmarks,
rotating around the image vertical axis (after alignment
of the images this is the new tilt axis) whose projections
are the same as the ones found at image 0. It can be
easily proved that the new 3D landmarks can be defined
as

′ = −
− −

r ruj Y jR R R
axisq

a y
qp0

0

0

2

, , (27)

under the projective model

p rij Y jHR
i

= ′q , (28)

in which there is no in-plane shift or rotation since these
effects have already been corrected. Under these condi-
tions, we propose to locate the tilt axis in a position such
that r0 = (0, 0, z0)

t. Then, the previous projective model
has to be changed to

p r r r rij Y j Y j i
tH R HR z sin

i i
= ′ − + = ′ −( ( ) ) ( ( ), ), ,q q q0 0 0 0

(29)

In order to make the tilt axis pass through the middle of
the reconstructed volume, we propose to set z0 as the
mean of the Z components of the new 3D landmarks

z
N

R R RY

j V

j zaxis0
1

0
2

0

0
0

0
= −

− −∈
∑ ( ), ,q

a y
qp u r (30)

where V0 is the set of landmarks seen at image 0, N0 is
the total number of these landmarks, and (x)z denotes
the Z component of vector x. Finally, the aligned tilt
series images is given by

I I R z sincorrected
i

H
i

H i
t

i
i

( ) ( )( ) ( ( ( ( ), ) ) )t t d= − −
− −

p q
a y

2

00

(31)
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